Быстрые и медленные моторные единицы. Моторные единицы. Строение скелетной мышцы

Двигательная единица

группа мышечных волокон, иннервируемых одним мотонейроном.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Двигательная единица" в других словарях:

    ДВИГАТЕЛЬНАЯ ЕДИНИЦА - Основная единица действия нервно мышечной системы; она включает отдельное эфферентное нервное волокно от отдельного моторного нейрона вместе с мышечным волокном, которое он ин нервирует … Толковый словарь по психологии

    Двигательная единица - – группа мышечных волокон, иннервируемая одним мотонейроном; нейромоторная единица … Словарь терминов по физиологии сельскохозяйственных животных

    Группа мышечных волокон, иннервируемых одним мотонейроном … Большой медицинский словарь

    Единица двигательная - Функциональная единица нейромоторного аппарата. Представляет собой периферический мотонейрон, его отростки и группу иннервируемых им мышечных волокон. При этом аксон мотонейрона, идущий к мышце, обеспечивающей тонкие движения, иннервируют по 5–12 … Энциклопедический словарь по психологии и педагогике

    Эта страница глоссарий. # А … Википедия

    ГОСТ Р 54828-2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия - Терминология ГОСТ Р 54828 2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия оригинал документа: 3.1.23 IP код (IP code):… …

    50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и данных … Словарь-справочник терминов нормативно-технической документации

    Р 50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология Р 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и… … Словарь-справочник терминов нормативно-технической документации

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

    ГОЛОВНОЙ МОЗГ - ГОЛОВНОЙ МОЗГ. Содержание: Методы изучения головного мозга..... . . 485 Филогенетическое и онтогенетическое развитие головного мозга............. 489 Bee головного мозга..............502 Анатомия головного мозга Макроскопическое и… … Большая медицинская энциклопедия

    I Грудной ребёнок ребенок в возрасте до одного года. Выделяют период новорожденности, продолжающийся 4 нед. после рождения (см. Новорожденный (Новорождённый)) и грудной возраст (от 4 нед. до 1 года). В грудном возрасте ребенок растет и… … Медицинская энциклопедия

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые. Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример - камбаловидная мышца.

IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется миогенным механизмом регуляции сократительной активности.

С функциональной точки зрения мышца состоит из ДЕ. Двигательная единица (ДЕ) - это понятие структурно-функциональное. В состав отдельной ДЕ входит мотонейрон и иннервируемый его аксоном комплекс мышечных волокон. Мышечные волокна, объединенные в одну ДЕ, разбросаны среди других мышечных волокон, принадлежащих другим ДЕ, и изолированы от последних. Отдельные мышцы включают в себя разное количество ДЕ.

В зависимости от морфологических особенностей мотонейрона и мышечных волокон, ДЕ подразделяются на малые, средние и большие.

Малая ДЕ состоит из нескольких мышечных волокон и небольшого по размеру мотонейрона с тонким аксоном - до 5 - 7 мкм и небольшим количеством аксонных ветвлений. ДЕ этой группы характерны для мелких мышц кисти, предплечья, мимической и глазодвигательной мускулатуры. Реже они встречаются в крупных мышцах конечностей и туловища.

Большие ДЕ состоят из крупных мотонейронов с толстым (до 15 мкм) аксоном, и значительного числа (до нескольких тысяч) мышечных волокон. Они составляют основную долю среди ДЕ крупных мышц.

Средние, по размеру, ДЕ занимают промежуточное положение.

    Какая связь между размерами мышцы и способностью выполнять движения и ДЕ?

В целом, чем крупнее мышца и чем меньше разработаны движения, в которых она участвует, тем меньшим числом ДЕ она представлена и тем крупнее ДЕ, ее составляющие.

    Почему, кто-то силен с рождения, а кто-то вынослив?

Но вот еще один важный момент. Оказывается, волокна в каждой мышце бывают двух типов – быстрые и медленные.

Медленно с окращающиеся волокна еще называют красными , потому что в них находится много красного мышечного пигмента миоглобина. Эти волокна отличаются хорошей выносливостью.

Быстрые волокна, по сравнению с красными волокнами, обладают небольшим содержанием миоглобина, поэтому их называют белыми волокнами. Они отличаются высокой скоростью сокращений и позволяют развивать большую силу.

Да вы и сами видели такие волокна у курицы – ножки красные, грудка белая, Воот! Это оно самое и есть, только у человека эти волокна перемешаны и присутствуют оба типа в одной мышце.

Красные (медленные) волокна используют аэробный (с участием кислорода) путь получения энергии, поэтому к ним подходит больше капилляров, для лучшего снабжения их кислородом. Благодаря такому вот способу преобразования энергии, красные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение. В основном, именно они важны для бегунов на длинные дистанции, и в других видах спорта, где требуется выносливость. Значит, и для всех желающих похудеть они имеют так же решающую роль.

Быстрые (белые) волокна, получают энергию для своего сокращения без участия кислорода (анаэробно). Такой способ получения энергии (его еще называют гликолизом), позволяет белым волокнам развивать большую быстроту, силу и мощность . Но за высокую скорость получения энергии белым волокнам приходится платить быстрой утомляемостью, так как гликолиз приводит к образованию молочной кислоты, а ее накопление вызывает усталость мышц и в итоге останавливает их работу. Ну и, конечно же, без белых волокон ну никак не могут обойтись метатели, штангисты, бегуны на короткие дистанции….. в общем те, кому требуются сила и скорость.

Теперь придется вас немного запутать, просто потому, что по-другому ну никак не получается. Дело в том, что существует еще один, промежуточный тип волокон, который так же относиться к белым волокнам, но использует как и красные, преимущественно аэробный путь получения энергии и совмещает в себе свойства белых и красных волокон. Еще раз напомню, он относится к белым волокнам.

В среднем человек имеет примерно 40% медленных (красных) и 60 % быстрых (белых) волокон. Но это средняя величина по всей скелетной мускулатуре, что-то наподобие средней температуры по больнице.

На самом деле, мышцы выполняют различные функции и поэтому могут значительно отличаться друг от друга составом волокон. Ну, например, мышцы, выполняющие большую статическую работу (камбаловидная, она же икроножная мышца), часто обладают большим количеством медленных волокон, а мышцы, совершающие в основном динамические движения (бицепс), имеют большое количество быстрых волокон.

Интересно то, что соотношение быстрых и медленных волокон у нас неизменно, не зависит от тренированности и определяется на генетическом уровне. Именно поэтому существует предрасположенность к тем или иным видам спорта.

Теперь давайте-ка посмотрим, как же все это работает.

    Когда человек больше худеет на беговой дорожке или на тренажерах?

Когда требуется легкое усилие, например, при ходьбе или беге трусцой, задействуются медленные волокна. Причем ввиду большой выносливости этих волокон такая работа может продолжаться очень долго. Но по мере увеличения нагрузки организму приходится вовлекать в работу все больше и больше таких волокон, причем те, что уже работали, увеличивают силу сокращения. Если еще увеличивать нагрузку, то в работу включатся так же быстрые окислительные волокна (помните промежуточные?). При нагрузке достигающей 20%-25% от максимальной, например, во время подъема в гору или финального рывка, уже и силы окислительных волокон становится недостаточно, и вот тут как раз включатся в работу быстрые - гликолитические волокна. Как уже говорилось, быстрые волокна значительно повышают силу сокращения мышцы, но, так же быстро и утомляются, и поэтому в работу будет вовлекаться все большее их количество. В итоге, если уровень нагрузки не уменьшится, движение в скором времени придется остановить из-за усталости.

Вот и получается, что при длительной нагрузке в умеренном темпе, работают в основном медленные (красные) волокна и именно благодаря их аэробному способу получения энергии и сжигаются жиры в нашем организме.

Вот вам и ответ на вопрос, почему мы худеем на беговой дорожке и практически не худеем при занятиях на тренажерах. Все просто - используются разные различные мышечные волокна, а значит и разные источники энергии.

Вообще, мышцы - самый экономичный в мире двигатель. Растут и увеличивают свою силу, мышцы исключительно за счет увеличения толщины мышечных волокон, количество же мышечных волокон не увеличивается. Поэтому, самый последний заморыш и Геракл по числу мышечных волокон не имеют друг перед другом никакого преимущества. Кстати, процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения - атрофия.

При тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при тренировках на выносливость, потому что сила зависит от поперечного сечения мышечных волокон, а выносливость - от добавочного количества капилляров, окружающих эти волокна. Соответственно, чем больше капилляров, тем больше кислорода с кровью будет доставлено к работающим мышам.

В соответствии с делением мышечных волокон и мотонейронов на медленные и быстрые принято выделять три типа ДЕ.

Медленные, неутомляемые двигательные единицы (ДЕ I) состоят из

мотонейронов малого размера, имеющих низкий порог возбудимости, высокое

входное сопротивление. При деполяризации мелких нейронов возникает продолжительный разряд с незначительной адаптацией. Мотонейроны с такими свойствами называются тоническими. Небольшой диаметр аксона (до 5 -7 мкм) объясняет и невысокую, по сравнению с более толстыми, скорость проведения возбуждения. Мышечные волокна, входящие в ДЕ этого типа, относятся к красным волокнам (тип I), имеющим наименьший диаметр, скорость их сокращения минимальна, максимальное напряжение слабее, чем белых волокон (тип II), они характеризуются малой утомляемостью.

Быстрые, легко утомляемые двигательные единицы (тип ДЕ II В ) сформированы из крупных (до 100 мкм в поперечнике) мотонейронов, имеющих высокий порог возбуждения, диаметр их аксонов наибольший (до 15 мкм), скорость проведения возбуждения достигает 120 м/с, высокочастотная импульсация кратковременна и быстро спадает, т.к. происходит быстрая адаптация. Крупные мотонейроны относятся к нейронам фазического типа. Входящие в эти ДЕ мышечные волокна относятся ко II типу (белые волокна). Они способны развивать значительное напряжение, но быстро утомляются. Как правило, ДЕ этого типа содержат большое число мышечных волокон (большие ДЕ). Гладкий тетанус в них наблюдается при высокой частоте импульсации (порядка 50 имп/с), в отличие от ДЕ I, где это достигается при частоте до 20 имп/с.

Третий тип двигательных единиц - тип ДЕ II-A относится к промежуточному типу. В их состав входят как быстрые, так и медленные мышечные волокна. Мотонейроны - среднего калибра.

Скелетные мышцы, в зависимости от их функциональных особенностей, состоят из различного набора двигательных единиц. Тип ДЕ формируется в процессе онтогенеза и в зрелой мышце соотношение быстрых и медленных ДЕ уже не меняется. Как уже указывалось, в целой мышце мышечные волокна одной ДЕ перемежаются с волокнами нескольких других ДЕ. Перекрытие зон ДЕ обеспечивает, как считается, плавность сокращения мышцы, даже если каждая отдельная ДЕ не достигает состояния гладкого тетануса.

При выполнении мышечной работы нарастающей мощности, в активность всегда вначале включаются медленные двигательные единицы, которые развивают слабое, но тонко градуированное напряжение. Для выполнения значительных усилий, к первым подключаются крупные, сильные, но быстроутомляемые ДЕ второго типа.

Отросток двигательного нерва, который находится в спинном мозге, может достигать мышечного волокна. Нервная клетка своими отростками иннервирует большое количество мышечных волокон. Нервная клетка и волокна, которые связаны с ней, называются двигательными единицами. Состав мышц может быть разным по числу двигательных единиц, а они состоят из разного количества мышечных волокон. Все эти волокна двигательной единицы относятся к одинаковому типу волокна.

Мышцы, в чью функцию входит выполнение точных и тонких движений.

Мышцы, которые выполняют относительно грубые движения, к примеру, большие мышцы конечности. Как правило, такие мышцы имею меньшее количество двигательных единиц, но число волокон у них больше. Так, к примеру, бицепс в своем составе содержит больше миллиона волокон. Данные волокна вместе с нервными окончаниями образуют больше, чем шестьсот двигательных единиц.

В мышцах спины до двух тысяч и в большеберцовой кости примерно полторы тысячи мышечных волокон иннервируются передним рогом, образуя тем самым двигательную единицу в каждом случае.

Но число волокон в двигательных единицах какой-то мышцы не может быть одинаковым, к примеру, в бицепсе может быть 1600, 1400, 1200 или 1000 волокон.

Принадлежность волокон к двигательной единице задается от природы и не меняется тренировками.

Сила двигательных единиц мышц зависит от количества мышечных волокон. Двигательные единицы, в которых небольшое количество волокон, при сокращении развивают силу тяги только в несколько миллиньютонов, а двигательные единицы, у которых большое количество волокон, развивают несколько ньютонов. Силовой потенциал какой-либо двигательной единицы не очень большой, поэтому для того, чтобы выполнить движения одновременно, подключаются сразу несколько единиц. Чем выше будет сопротивление, тем большее количество двигательных единиц выполняет движение.

У каждой двигательной единицы есть свой порог возбуждения, который может являться высоким или низким. Если слабый импульсный залп, то активизируются только двигательные единицы, которые обладают низким порогом возбудимости. Если данный залп начинает усиливаться, то реагируют дополнительные двигательные единицы, у которых порог возбуждения более высокий.

С повышением сопротивления активизируется больше двигательных единиц. Быстрота порогов возбуждения зависит от состояния двигательных единиц.

Двигательная единица группа мышечных волокон, иннервируемых одним мотонейроном.

Большой медицинский словарь . 2000 .

Смотреть что такое "двигательная единица" в других словарях:

    ДВИГАТЕЛЬНАЯ ЕДИНИЦА - Основная единица действия нервно мышечной системы; она включает отдельное эфферентное нервное волокно от отдельного моторного нейрона вместе с мышечным волокном, которое он ин нервирует … Толковый словарь по психологии

    Двигательная единица - – группа мышечных волокон, иннервируемая одним мотонейроном; нейромоторная единица … Словарь терминов по физиологии сельскохозяйственных животных

    Единица двигательная - Функциональная единица нейромоторного аппарата. Представляет собой периферический мотонейрон, его отростки и группу иннервируемых им мышечных волокон. При этом аксон мотонейрона, идущий к мышце, обеспечивающей тонкие движения, иннервируют по 5–12 … Энциклопедический словарь по психологии и педагогике

    Эта страница глоссарий. # А … Википедия

    ГОСТ Р 54828-2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия - Терминология ГОСТ Р 54828 2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия оригинал документа: 3.1.23 IP код (IP code):… …

    50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и данных … Словарь-справочник терминов нормативно-технической документации

    Р 50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология Р 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и… … Словарь-справочник терминов нормативно-технической документации

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

    ГОЛОВНОЙ МОЗГ - ГОЛОВНОЙ МОЗГ. Содержание: Методы изучения головного мозга..... . . 485 Филогенетическое и онтогенетическое развитие головного мозга............. 489 Bee головного мозга..............502 Анатомия головного мозга Макроскопическое и… … Большая медицинская энциклопедия

    I Грудной ребёнок ребенок в возрасте до одного года. Выделяют период новорожденности, продолжающийся 4 нед. после рождения (см. Новорожденный (Новорождённый)) и грудной возраст (от 4 нед. до 1 года). В грудном возрасте ребенок растет и… … Медицинская энциклопедия