Механизм электромеханического сопряжения теория скольжения роль ионов кальция. Механизм сопряжения возбуждения и сокращения в поперечно-полосатых мышечных волокнах (электромеханическое сокращение) Длительность сокращения скелетных и сердечных мышц

Соотношение между временным ходом потенциала действия в мышечном волокне и возникающим в результате этого сокращением мышечного волокна с последующим его расслаблением.

Электромеханическое сопряжение

Это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску сокращения мышцы или к так называемому циклу поперечных мостиков, который будет продемонстрирован далее.

Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках. Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности (рис. 12 ). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са 2+ , которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

Что представляет собой сопряжение возбуждения и сокращения (ВС сопряжение)?

Запуск нервным импульсом сокращения скелетной мышцы. При нормальных условиях скелетная мышца в покое слегка натянута. Это свидетельство минимального или слабого связывания актина с миозином. Нервный импульс, достигший терминального нервного окончания, передается на ацетилхолиновый рецептор. В скелетной мышце этот рецептор представлен специализированным образованием, которое называется двигательной концевой пластинкой. Двигательная концевая пластинка представляет собой участок сарколеммы с множеством складок, расположенный в непосредственной близости от нервного окончания. Выделенный нервным окончанием ацетилхолин диффундирует через синаптическую щель и связывается с рецепторами, расположенными на многочисленных складках постсинаптической мембраны (концевой пластинки сарколеммы). Лиганд-рецепторное взаимодействие повышает проницаемость мембраны для натрия, что вызывает местную деполяризацию (потенциал действия концевой пластинки). Потенциал действия концевой пластинки распространяется по сарколемме в разных направлениях и проводится по Т-тру-бочкам внутрь мышечного волокна. Деполяризация триады (концевая цистерна, Т-трубочка и СР) вызывает высвобождение во внутриклеточную жидкость депонированных в СР ионов кальция. При наличии высокой концентрации ионов кальция и достаточного количества энергии запускается цикл поперечных мостиков. Гидролиз вновь синтезированных молекул АТФ реактивирует миозиновые головки, которые присоединяются к другим активным участкам молекулы миозина. Циклическая работа поперечных мостиков продолжается до тех пор, пока имеются свободные ионы кальция и достаточное количество АТФ.

Рис.13. Модель скользящих нитей.

Что такое теория скользящих нитей?

Эта теория объясняет, каким образом фиксированные толстые и тонкие филаменты перемещаются друг относительно друга и обеспечивают сокращение саркомера. Перемещение, происходящее во время цикла поперечных мостиков, обусловлено скольжением молекулы актина по миозину. Повторяющееся присоединение и отделение ряда поперечных мостиков приводит к тому, что параллельно расположенные филаменты скользят друг по другу, сокращая тем самым расстояние между двумя соседними г-линиями. Таким образом саркомер укорачивается. Сокращение саркомера приводит к возникновению некоторой силы.

Модель скользящих нитей

Во время генерирования силы, укорачивающей мышечное волокно, перекрывающиеся толстые и тонкие филаменты каждого саркомера, подтягиваемые движениями поперечных мостиков, сдвигаются друг относительно друга. Длина толстых и тонких филаментов при укорочении саркомера не изменяется (рис. 13 ). Этот механизм мышечного сокращения известен как модель скользящих нитей.

Связь между возбуждением и сокращением мышечного волокна описана А.Хаксли (1959). Осуществляется при помощи системы поперечных трубочек поверхностной мембраны (Т-системы) и внутриволоконного саркоплазматического ретикулума. Деполяризация, вызываемая потенциалом действия, распространяется на Т - систему и стимулирует освобождение ионов кальция из полостей ретикулума. Взаимодействие ионов кальция с регуляторным белком тропонином С приводит к активации системы сократительных белков актина и миозина. Механизм генерации потенциала действия принципиально не отличается от этого процесса в нейроне. Скорость его распространения по мембране мышечного волокна 3 - 5 м/c.

5. Режимы и виды сокращения мышц

Режимы сокращения мышцы: изотонический (когда мышца укорачивается при неизменном внутреннем напряжении, например, при нулевой массе поднимаемого груза) и изометрический (при этом режиме мышца не укорачивается, а лишь развивает внутреннее напряжение, что бывает при нагрузке неподъёмным грузом). Ауксотонический режим - при сокращении мышцы с нагрузкой вначале в мышце возрастает напряжение без укорочения (изометрический режим), затем, когда напряжение преодолевает массу поднимаемого груза, укорочение мышцы происходит без дальнейшего роста напряжения (изотонический режим).

Различают виды сокращений: одиночное и тетаническое. Одиночное сокращение возникает при действии на мышцу одиночного нервного импульса или однократного толчка тока. В миоплазме мышцы происходит кратковременный подъём концентрации кальция, сопровождаемый кратковременной работой - тягой миозиновых мостиков, сменяющейся покоем. В изометрическом режиме одиночное напряжение начинается через 2 мс после развития потенциала действия, причём напряжению предшествует кратковременное и незначительное латентное расслабление.

Тетанус - это сложное сокращение, возникающее при стимуляции с частотой выше, чем длительность одиночного мышечного сокращения. Тетанус бывает зубчатый, если мышца совершает незначительные колебания на высоте амплитуды сокращения, и гладкий - при постоянном во времени сокращении. При относительно малой частоте раздражений возникает зубчатый тетанус, при большой частоте - гладкий тетанус. Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

В естественных условиях мышечные волокна работают в режиме одиночного сокращения только тогда, когда длительность интервала между разрядами мотонейронов равна или превышает длительность одиночного сокращения иннервируемых данным мотонейроном мышечных волокон. В режиме одиночного сокращения мышца способна работать длительное время без утомления, совершая при этом минимальную работу. При увеличении частоты разрядов развивается тетаническое сокращение. При зубчатом тетанусе происходит непрерывное нарастание силы сокращения и выполняемой работы. Во время гладкого тетануса мышечное напряжение не изменяется, а поддерживается на достигнутом уровне. В таком режиме мышца человека работает при развитии максимальных изометрических усилий. Работа мышцы (А) измеряется произведением массы груза (Р) и расстояния (H), на которое этот груз перемещается.

Работа может быть динамической (преобладают изотонические режимы сокращения) или статической. Она может быть преодолевающей и уступающей.

Расслабление мышцы.

Восстановление потенциала покоя мембраны прекращает поступление из саркоплазматического ретикулума ионов кальция и дальнейший сократительный процесс. Кальций в миоплазме активирует Са-АТФ-азу, кальциевый насос осуществляет активный перенос этого иона в саркоплазматический ретикулум. Возврат мышцы в исходное, растянутое положение определяется массой костей скелета, связанных с данными мышцами и создающими растягивающее усилие после прекращения процесса сокращения. Вторым моментом является упругость мышцы, которая преодолевается в момент сокращения. Структурной основой упругости мышцы являются:

Поперечные мостики.

Участки прикрепления концов миофибрилл к сухожильным элементам мышечного волокна.

Наружные соединительнотканные элементы мышцы и её волокна.

Места прикрепления мышц к костям.

Продольная система саркоплазматического ретикулума.

Сарколемма мышечного волокна.

Капиллярная сосудистая сеть мышцы.

Электромеханическое сопряжение – то цикл последовательных процессов, который начинается с возникновения потенциала действия на сарколемме и заканчивается сократительным ответом мышцы.

Общепринятой моделью мышечного сокращения является модель скользящих нитей, согласно которой сократительный процесс происходит следующим образом.

Под действием нервного импульса в сарколемме открываются натриевые каналы, и ионы Na + входят в мышечную клетку, вызывая возбуждение (деполяризацию) сарколеммы.

Электрохимически процесс возбуждения передается на саркоплазматической ретикулум. В результате повышается проницаемость этой мембранной структуры для ионов Са ++ и происходит их выброс в цитоплазматическую жидкость (саркоплазму), заполняющую мышечное волокно. Повышение концентрации Са ++ с 10 –7 до 10 –5 моль/л стимулирует циклическую работу миозиновых «мостиков». «Мостик» связывается с актином и тянет его к центру А -зоны, в область расположения миозиновых нитей, перемещая на расстояние 10–12 нм. Затем он отщепляется от актина, связывается с ним в другой точке и опять подтягивает в нужную сторону. Непрерывное движение актиновных нитей происходит в результате поочередной работы «мостиков». Частота циклов их движений, по-видимому, регулируется в зависимости от нагрузки на мышцу и может достигать 1000 Гц. «Мостики» обладают АТФ-азной активностью, стимулируют расщепление АТФ и используют высвобождающуюся при этом энергию для своей работы.

Возвращение мышцы к исходному состоянию обусловлено обратными переходами ионов Са ++ из саркоплазмы в ретикулум вследствие работы кальциевых насосов и тем, что К + пассивно выходит из мышечной клетки, вызывая реполяризацию саркоплемы.

Механическое усилие, развиваемое мышцей при сокращении, зависит от величины еë поперечного сечения, от начальной длины волокон и ряда других факторов. Сила мышцы, приходящаяся на 1 см 2 её поперечного сечения, называется абсолютной мышечной силой. Для человека она изменяется в пределах 50–100 . Сила одних и тех же мышц человека зависит от ряда физиологических условий: возраста, пола, тренированности и т. д. Следует также отметить. Что в разных мышечных клетках организма процесс сопряжения происходит несколько по-разному. Например, задержка начала сокращения по отношению к началу возбуждения сарколеммы в скелетных мышцах составляет 20 мс, в сердечной – несколько больше (до 100 мс).


* Если молекула или часть молекулы имеют неравный нулю дипольный момент или электрический заряд, то их называют полярными

При активации гладкомышечной клетки ионы кальция могут входить в через дигидропиридин-чувствительные, потенциал-зависимые кальциевые каналы L- типа, которые располагаются в кавеолах – инвагинациях плазматической мембраны, контактирующих с саркоплазматическим ретикулумом. Кальциевые потенциал-зависимые каналы L- типа также активируются в ответ на растяжение мембраны, и результатом является деполяризация мембраны. Концентрация Са 2+ во внеклеточной жидкости приблизительно в 10 000 раз больше, чем в саркоплазме. Поэтому ионы Са 2+ довольно быстро входят в клетку через Са 2+ каналы. Небольшие размеры гладкомышечной клетки создают благоприятные условия для быстрой диффузии ионов Са 2+ к внутриклеточным участкам связывания. В дальнейшем ионы Са 2+ инициируют выход Са 2+ из депо – саркоплазматического ретикулума и активацию процесса сокращения гладкой мышцы. Для некоторых гладкомышечных клеток, например, составляющих мышечную стенку артериол, вход ионов Са 2+ через потенциал-зависимые Са 2+ -каналы определяет уровень внутриклеточной концентрации ионов Са 2+ . Для других типов гладких мышц этот путь повышения концентрации ионов Са 2+ в саркоплазме не существенен. Потенциал действия может также быть вызван активацией быстрых потенцал-зависимых Na + -каналов, например vas deferens мыши .

Са 2+ -вызванное освобождение Са 2+ из саркоплазматического ретикулума играет основную роль в электромеханическом сопряжении и в сердечной мышце, где наблюдается большое количество L–типа Са 2+ каналов, тесно прилегающих к Са 2+ каналам саркоплазматического ретикулума. Ионы Са 2+ из саркоплазматического ретикулума выходят через ионные каналы, которые активируются рианодиновыми рецепторами . Впервые рианодиновые рецепторы были обнаружены в скелетной мышце и название свое получили от названия антагониста, алкалоида растительного происхождения, рианодина. Причем, в низких концентрациях рианодин способен активировать Са 2+ канал рианодинового рецептора, а в высоких – вызывает его блокаду .

В гладкой мышце взаимоотношения между плазматической мембраной и саркоплазматическим ретикулумом не настолько четко организованы, как в скелетной и в сердечной мышце. Однако в гладкой мышце имеются электронно-плотные участки (мостики), размером около 20 нм. В этих участках ко-локализованы дигидропиридиновые рецепторы плазматической мембраны и рианодиновые рецепторы саркоплазматического ретикулума. Были идентифицированы и клонированы три различных типа рианодиновых рецепторов: тип RyR1 обнаружен в скелетных мышцах, тип RyR2 – в мышцах сердца. Считается, что в гладкой мышце присутствует RyR3 изоформа рианодиновых рецепторов . Рецептор к рианодину представляет из себя тетрамерный комплекс, состоящий из мономеров (трансмембранных полипептидов) с молекулярной массой 500 кДа. Рианодиновые рецепторы гладких мышц активируются микромолярной внутриклеточной концентрацией ионов Са 2+ и кофеином. Ингибируются рианодиновые рецепторы ионами Mg 2+ и рутением красным. При взаимодействии с ионами Са 2+ комплекс рианодинового рецептора образует кальций-активируемый Са 2+ канал, через который ионы Са 2+ выходят из саркоплазматического ретикулума в саркоплазму. Проводимость ионного канала рианодинового рецептора для ионов Са 2+ в гладкомышечной клетке сопоставима с проводимостью ионного канала рианодинового рецептора в скелетной и сердечной мышце. Однако, плотность рианодиновых рецепторов в гладкой мышце значительно ниже плотности в других мышечных тканях .



Выход ионов Са 2+ из саркоплазматического ретикулума в саркоплазму носит локальный характер. Это местное и довольно значительное повышение концентрации ионов Са 2+ называется Са 2+ -спарк. Вход ионов Са 2+ через Са 2+ -каналы плазматической мембраны и Са 2+ -спарки повышают общую «глобальную» внутриклеточную концентрацию ионов Са 2+ , что инициирует процесс сокращения гладкой мышцы. Это – электромеханический путь сопряжения процессов возбуждения и сокращения .

Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Основная особенность электронных учебных пособий состоит в сочетании необходимого и специально подобранного теоретического материала, дополняющего печатные издания с большим числом разнообразных, тщательно проработанных тестов.

Многофункциональное электронное учебное пособие предназначено для самостоятельного освоения учебного курса, получения навыков практического применения знаний, для автоматизации и интеллектуализации прикладных задач. Ориентация системы тестирования на личностные качества обучаемых позволяет определить индивидуальные особенности обучающегося и, в соответствии с этим, рекомендовать методику обучения, которая позволит оптимизировать процесс получения знаний.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по схеме рисунок 11.

Рисунок 11 Схема электромеханического сопряжения в кардиомиоците (М - клеточная мембрана-сарколемма, СР - саркоплазматический ретикулум, МФ - миофибрилла, Z - z-диски, Т - Т-система поперечных трубочек); 1 - поступления Na+ и 2 - поступления Са2+ в клетку при возбуждении мембраны, 3 - "кальциевый залп", 4 - активный транспорт Са2+ в СР, 5 - выход из клетки К+, вызывающий реполяризацию мембраны, 6 -- активный транспорт Са2+ из клетки

Процесс сокращения кардиомиоцита происходит следующим образом (номера пунктов в тексте соответствуют номерам процессов в схеме электромеханического сопряжения на рисунок 11):

  • 1 - при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы Na+ входят в клетку, вызывая деполяризацию мембраны;
  • 2 - в результате деполяризация плазматической мембраны в ней и в Т-трубочках открываются потенциал-зависимые медленные кальциевые каналы (время жизни 200 мс), и ионы Са2+ поступают из внеклеточной среды, где их концентрация 2 * 10-3 моль / л, внутрь клетки (внутриклеточная концентрация Са2+ 10-7 моль /л);
  • 3 - кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са2+ (в СР их концентрация достигает = 10"3 моль/л), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый «кальциевый залп». Ионы Са2+ из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;
  • 4 - по окончании процесса сокращения миофибрилл ионы Са2+ с помощью кальциевых насосов, находящихся в мембране СР, активно заканчиваются внутрь саркоплазматического ретикулума;
  • 5 - процесс электромеханического сопряжения заканчивается тем, что К+ пассивно выходит из клетки, вызывая реполяризацию мембраны;
  • 6 - ионы Са2+ активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный выше двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки jCa прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения.

Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к z-дискам (см. рисунок 11). Изменения мембранного потенциала во время деполяризации через Т-систему, вызывая залповое высвобождение ионов Са2+ и дальнейшую активацию сокращения (3, 4, 5).

Временной ход описанных процессов показан на рисунок 12.

Общим для любых мышечных клеток является процесс освобождения ионов Са2+ и внутриклеточных депо - саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присунокутствии ионов Са2+ белка экворина, который был выделен из светящихся медуз. Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной - несколько больше (до 100 мс).

Рисунок 12 Временное соотношение между потенциалом действия кардиомиоцита (а) и одиночным сокращением (б) в этих клетках. Ордината слева - мембранный потенциал, справа - сила. - потенциал покоя